
A7DAO90 797 STANFORD UNIV CA SYSTEMS OPTIMIZATION LAS F/S 12/1
AA CONSTRUCTIVE PROOF OF TUCKER'S COMBINATORIAL LEMMA.(U)

JUN 80 R M FREUND, M J TODD DAA629-78-6-0026

UNCLASSIFIED SOL-80-12 ARO-15254.1I P4 NL

LEND
1:00



Systems LY L /
.4 " Laboratory

.

DTIC
oc'rT 2 3 M

Approved for puablic r*1ea34
Distribution Unlimited

=3 )epartmeflt of Operations Research
"'Stanford University
Stanford, CA 94305

'T 20 q1

V - - ---



W62
SYSTEMS OPTIMIZATION LABORATORY

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305

A CONSTRUCTIVE PROOF OF TUCKERS

COMBINATORIAL LEMMA

by

Robm . Frund"
and Michael J. Todd"

TECHNICAL REPORT SOL 80-12
June 1980

*Research and reproduction of this report were partially supported by the Depart-
ment of Energy Contract DE-ACO3-76-SF00326, PA No. DE-AT-03-76ER72018;
the National Science Foundation Grants MCS79-03145 and SOC78-16811; U.S.
Army Research Office contract DAAG-29-78-G-0026, at Stanford University.

"Research of this report was partially supported by National Science Foundation
Grant ENG76-08749 at Cornell University.

Reproduction in whole or in part is permitted for any purposes of the United States
Government. This document has been approved for public release and sale; its
distribution is unlimited.

i- I
WnUKM____ STAENW

Ap ro- fo ,,',i rolmo

. . . . . . . . . . . . . . .



Abstract

Tucker's combinatorial lemma is concerned with certain labellings [
of the vertices of a triangulation of the n-ball. It can be used as a

basis for the proof of antipodal-point theorems in the same way that

Sperner's lemma yields Brouwer's theorem. Here we give a constructive

proof, which thereby yields algorithms for antipodal-point problems.

Our method is based on an algorithm of Reiser.
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Introduction

Let Bn  denote the n-ball {x C Rn tlxII 1) where It x It is the

A -norm flil, and lo Slnt 1denote its boundary (x e R lxjI = 1). We

will call special a centrally symmetric triangulation of B" that refines the r'l

octahedral subdivision. The following result was proved for n 2 in (6];

for the general case, see (2, pages 134-141].

Tucker's Combinatorial Lemma. Let the vertices of a special triangulation T

of Bn be assigned labels from {± 1,...,±n}. If antipodal vertices of T

on Sn-  receive complementary labels (labels that sum to zero), then T

contains a complementary 1-simplex (a 1-simplex whose vertices have complementary

labels).

Tucker stated his lemma in a different form; the nonexistence of such a

labelling with no complementary 1-simplex was asserted. (In [2] and an earlier

abstract [7] a related positive assertion is given; however we have not been

able to find a constructive proof of this lemma.) We will prove below that

a complementary 1-simplex exists by devising an algorithm that will find one.

The algorithm is based on a method of Reiser for the nonlinear complementarity

problem [4].

Not only is Tucker's lemma stated in [6] in terms of nonexistence; his

derivation of antipodal-point theorems from it was by contr-diction. We briefly

indicate below how constructive proofs of two such theorems follow from

our algorithm.

The Borsuk-Ulam Theorem. If a continuous function maps Sn into Rn, at least

one pair of antipodal points is mapped into a single point.

Proof. Let the function be f: Sn -,Rn and define g: Bn + Rn  by

g(X) f(x, 1-lixll ) - f(-x, II xl -1); note that g(-x) -g(x) for x Sn -l .
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Now for any special triangulation T of Bn, label vertex v i (-I)

if lgi(v)l - maxj1g (v)I and gi(v) is positive (negative) (if g(v) = 0,

we are done). In case of ties, the least such index is chosen. This

labelling satisfies the requirements of the lemma and hence T contains

a complementary 1-simplex. Let x* be any limit point of such complementary

1-simplices for a sequence of special triangulations whose meshes approach

zero. A continuity argument implies that g(x*) = 0, and hence (x*, l-t1x*It)

and its antipode are mapped by f into the same point.

The Lusternik-Schnirelmann Theorem. If Sn  is covered by n+l closed sets,

at least one of them contains a pair of antipodal points.

Proof. Let the sets be CI,C .. C . Label the vertices of any special
12'"' n+l*

triangulation T of Bn as follows. If v is such a vertex, let

y = (v, 1-IlvIl'). Determine the least i such that C. contains y or -y.

If C. contains both y and -y, the theorem is proved. Also, if i = n+l

then since neither y nor -y lie in Ci, 1 < j < n, both must lie in

Cn and we are done. Hence assume that for each vertex v, i is between

1 and n and C. contains one of y, -y. Label v +i or -i accordingly.

Again, the labelling satisfies the requirements of the lemma and a complementary

1-simplex exists. Similarly, a limiting argument (some complementary pair

of labels occurs infinitely often; take any limit point of the corresponding

complementary 1-simplices) proves the claim.

Meyerson and Wright [3) and Barany [1] have also given algorithms for

the Borsuk-Ulam theorem. Both use vector-labelling, and their algorithms should

be more efficient for practical problems; however no computationally tractable

way is yet known to implement their techniques for dealing with the theoretical

possibility of degeneracy. We note that in an algorithm it would be preferable



to use the n-ball induced by the X.-norm, B: (x e RIx.I < 1 all 0;

several efficient special triangulations of Bn exist, for example, K1

and J [5, Chapter III]. Figure 1 below shows B 2 rather than B2

for this reason.

The Algorithm

First we need some notation. We note by sgn(A) the sign (O, l or -1)

R n nof any real number A~; similarly, for a vector x =(x) E Rn, sgn(x) is

the vector (sgn(x.)). For any sign vector 8 c R (i.e., each component

s. is 0, +1 or -1), C(s) denotes the closure of (x f RnIsgn(x) = s), i.e.

the set of those x for which x. is nonnegative, zero or nonpositive according as

s. is 1,0, or -1, for each i. We call C(s) an orthant - actually it is an

orthant of a coordinate subspace. Any special triangulation T induces triangulations

of C(s) n Bn for each s. Let o be a simplex of T; then sgn(x) is the same

for each x in the relative interior of o -- we let sgn(o) be this sign

vector. Clearly, C(sgn(o)) is the smallest orthant containing a. Since T

n-Iis centrally symmetric, every simplex a lying in S has an antipodal simplex

-0 = (-xlx C a).

Definition. For any sign vector s, a simplex o c T is s-labelled if,

whenever sI  is nonzero, sI i is a label of some vertex of a. If a is

sgn(o)-labelled, we say a is completely labelled.

Note that the 0-simplex (0) is always completely labelled by default

since its sign vector is zero. Also, if a c Sn 1 is completely labelled, so

is its antipodal simplex.

The algorithm proceeds by tracing a path in a graph G whose nodes are

completely labelled simplices until it finds a complementary 1-simplex. Thp

graph is given by the following:

', --_ _ - . . .. . ,. . ...... : ' ." " "J-
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Definition. Two completely labelled simplices 0 and T are adjacent

in G if they both lie in Sn -l and are antipodal, or if one is a face of the

other and o n T is sgn(o u T)-labelled. The degree of a completely

labelled simplex is the number of completely labelled simplices adjacent

to it in G.

Figure I illustrates completely labelled simplices and adjacency for

nz2.

Proposition.

(a) The O-simplex (0) has degree 1;

(b) Each completely labelled simplex containing a complementary 1-simplex

has degree 1;

(c) Every other completely labelled simplex has degree 2.

Proof. Let s be the sign vector of the completely labelled simplex a and

suppose s has k nonzero components. Then a lies in the k-dimensional

orthant C(s). In addition, the vertices of a must contain at least k

distinct labels, since a is s-labelled. Hence a is a (k-l)- or a k-simplex.

Suppose first that a is a (k-1)-simplex. If a does not lie in Sn -1,

it is a face of precisely two k-simplices in C(s), both completely labelled

since a is. If a lies in S , it is a face of one completely labelled

k-simplex in C(s), and its antipode is completely labelled. In either case,

o is of type (c) and has degree 2.

Suppose now a is a k-simplex. It then has k+l vertices, with one

extra label besides the k it is forced to have by completeness. This other

label is either a duplicate of one of the k, the complement of one of the

k, or ± j with sj = 0. In the first case, a has two faces with all

k labels and both are completely labelled; a is of type (c) and has degree

2. In the second case, a has just one face with the required k labels;

LkS
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a is of type (b) and has degree 1. In the last case, suppose the extra

label is +j (-j) and let t be a sign vector agreeing with s except

that t. = +1 (-i). Then a is a face of a unique (k+l)-simplex in C(t)]

and this simplex is completely labelled. In addition, a has one face

with the required k labels; the only exception is when a is the 0-simplex

{0). Hence a is either {M} and has degree 1 or is of type (c) with

degree 2. The proposition is now proved.

The combinatorial lemma follows directly from the proposition, since

every graph has an even number of nodes of odd degree. Indeed, we have a

stronger result; there is an odd number of completely labelled simplices

containing a complementary 1-simplex. However, since some complementary

1-simplices are contained in no completely labelled simplex and others in

several, we can say nothing of the parity of complementary 1-simplices.

More than just a proof, we now have an algorithm: follow a path of

adjacent completely labelled simplices from the O-simplex {0). By the

proposition, the path can terminate only when it encounters a complementary

1-simplex. In Figure 1 the sequence is p0 ,Tl, 2,.. .,TJ 4 . The algorithm can

be stated more concisely as follows; this description corresponds to Reiser's

algorithm in all respects except the reflection step.

Algorithm

nStep 0 (Initialization). Set s = v = 0 e R , a {v}. Go to

Step 1.

Step 1 (Labelling). Find the label ci of v, c ±I, 1< i < n.

If it is the complement of the label of another vertex of a, stop. If

a =0 go to Step 2, otherwise to Step 3.
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Stop 2 (Increasing the dimension). Set s i  E. Let T be the

simplex of C(s) with a as a face, and v its new vertex. Set a

and go to Step 1.

S (Dropping a vertex). Find the vertex w 0 v of a with

n-ilabel Ei. Let T be the face of a opposite w. If -r lies in S

set a - -a, S - -s, v * -w and go to Step 1. If sgn(T) = s, let

p be the simplex in C(s) with T as a face distinct from a, and

let v be its new vertex; set a - p and go to Step 1. Otherwise go to

Step 4.

Step 4 (Decreasing the dimension). Find i with (sgn(r)) i = 0 and

a 0. Set a - , c - si' s * sgn(t), v w and go to Step 3.1 1

In this form the algorithm generates p0,Ta 2,o4,a6,a, 1 1 T12 and

T as its successive a's in Figure 1.

Note that the only requirement on the labelling is that antipodal vertices

in Sn-1 have complementary labels--the coordinate structure of Bn is

immaterial. Hence the labels can be permuted so that complementary labels

remain complementary and the algorithm run again. This is a possible method

for obtaining several complementary 1-simplices--but of course it is not

guaranteed to find more than one. In Figure 1, if we interchange labels

1 and -2, -1 and 2 then the completely labelled simplex a containing

the complementary 1-simplex T is generated.

- - -- - --- - - 4- - - , e'4
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-1 -1 -2 -2 -2

-1 
-2,2-2

2 1

2 2 1

All simplices marked are completely labelled. a's are 2-simplices,

t's 1-simplices and 's 0-simplices. t lN and t are complementary. All

simplices with consecutive indices are adjacent. Since t is not (1,--I)

labelled, o and r are not adjacent.

Figure 1
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